

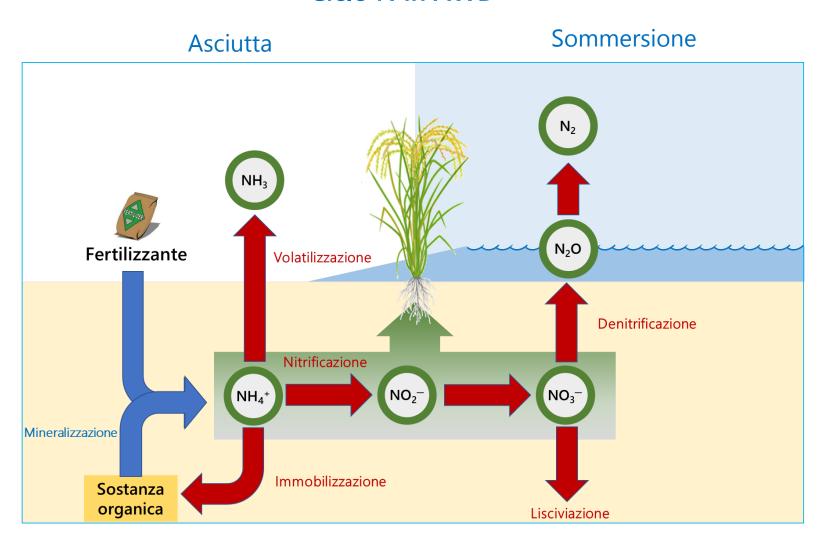
PROGETTO RISWAGEST

GESTIONE INNOVATIVA DELL'ACQUA IN RISAIA

Effetti della tecnica AWD sulla nutrizione azotata

Andrea Vitali

Ente Nazionale Risi - UNITO



Sperimentazione condotta nell'ambito del progetto di ricerca n. 6 RISWAGEST "Gestione innovativa dell'acqua in risaia" selezionato con il Bando per il finanziamento di progetti di ricerca in campo agricolo e forestale 2018 di Regione Lombardia. Progetto ammesso a finanziamento con d.d.s. 5 marzo 2020 - n. 2955.

OTTIMIZZAZIONE DELLA NUTRIZIONE AZOTATA ED EFFICIENZA D'USO DELL'AZOTO CON L'AWD

Ciclo N in AWD

OTTIMIZZAZIONE DELLA NUTRIZIONE AZOTATA ED EFFICIENZA D'USO DELL'AZOTO CON L'AWD

Approccio sperimentale

ESPERIMENTO IN VASO

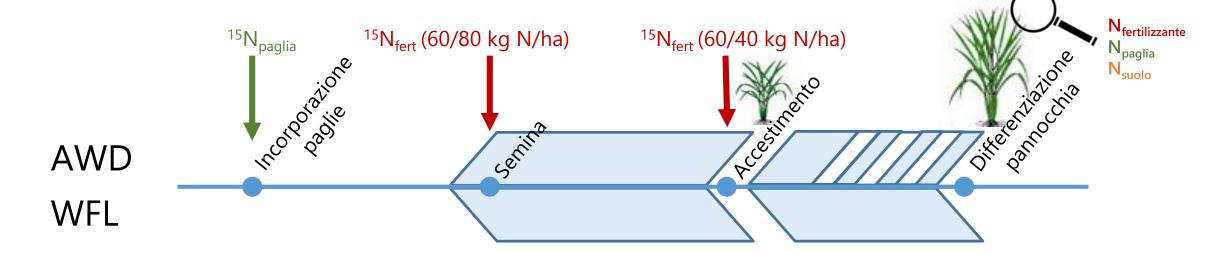
OBIETTIVI

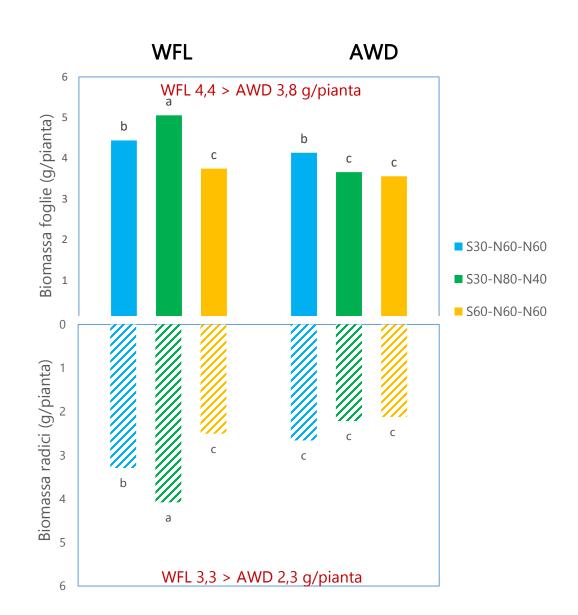
Valutare l'effetto dell'AWD sul contributo dell'azoto derivante dal concime e dalla degradazione delle paglie alla nutrizione del riso.

PROVA PARCELLARE IN

Valutare l'effetto dell'AWD sull'efficienza della fertilizzazione azotata in condizioni di campo per le diverse varietà confrontate.

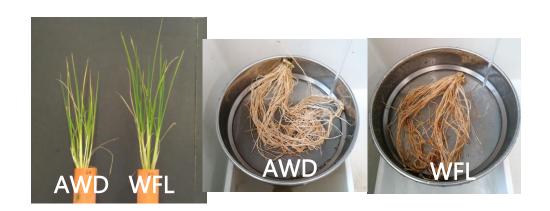
Disegno sperimentale


Come ridurre le perdite di azoto con l'AWD?

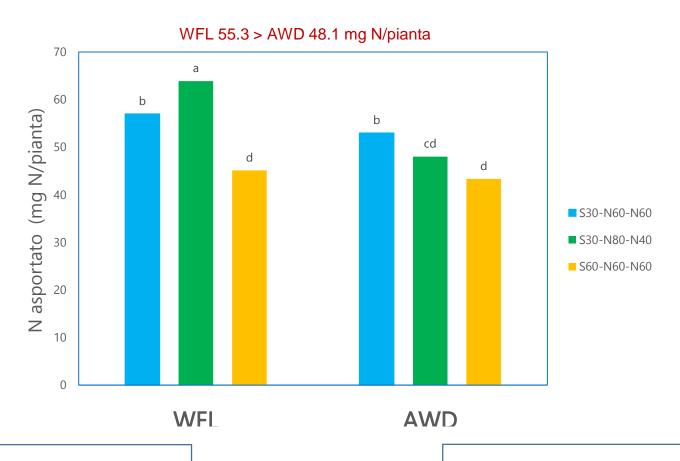

Immobilizzazione dell'N

Trattamento	Incorporazione paglie (giorni prima della sommersione)	Fertilizzazione presemina (kg N/ha)	Fertilizzazione accestimento (kg N/ha)
S30-N60-N60	30	60	60
S30-N80-N40	30	80	40
S60-N60-N60	60	60	60

- 2 Gestioni dell'acqua (WFL e AWD)
- 3 tesi di gestione paglia e concimazione azotata
- Varietà: CL26
- Fertilizzante: solfato ammonico
- Potenziale idrico AWD: 20 KPa



Effetti dell'AWD sulla crescita vegetale



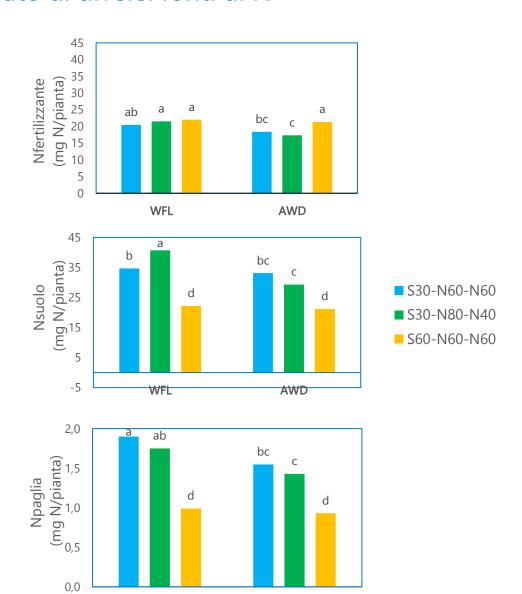
L'AWD riduce la crescità vegetale rispetto a WFL, penalizzando principalmente lo sviluppo delle radici

Effetti dell'AWD sulla nutrizione azotata

La gestione AWD riduce l'assorbimento di N da parte della pianta di circa 10-13% Una ripartizione temporale bilanciata della concimazione azotata favorisce la nutrizione azotata in AWD

Effetti dell'AWD sul contributo di diversi fonti di N

Ν


La gestione dell'acqua con AWD (con semina in acqua) non mostra effetti significativi sul recupero di N derivante dal fertilizzante rispetto a WFL Anticipare l'interramento dei residui può ridurre l'immobilizzazione microbica e favorire la disponibilità per la pianta

Ν

N derivante dalla SO del suolo rappresenta la fonte principale di N per pianta ed è influenzata dalla gestione dell'acqua Importante l'effetto della paglia sulla mineralizzazione della SO, particolarmente in ambiente anossico (desorbimento)

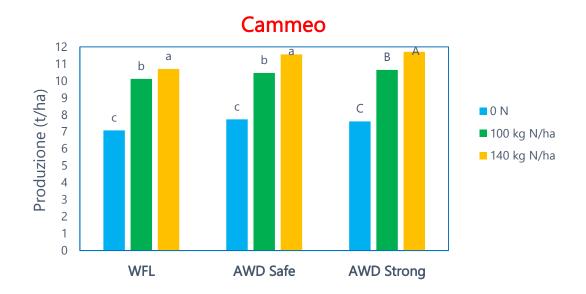
Ν

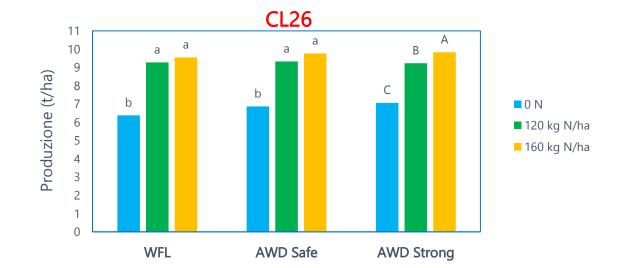
N derivante dalla paglia contribuisce solo in minima parte alla nutrizione azotata Anticipando l'interramento delle paglia si riduce il loro contributo alla nutrizione N particolarmente con l'AWD

AWD

WFL

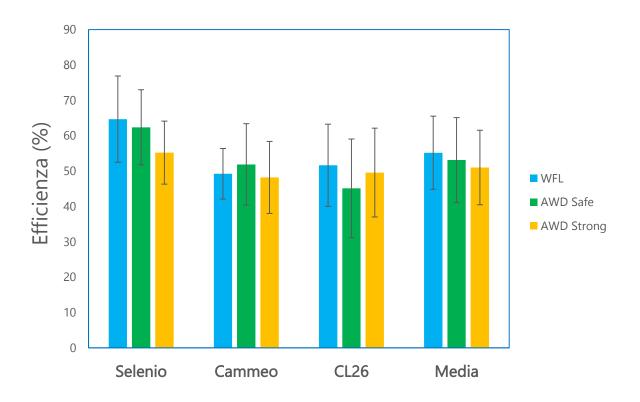
Effetti dell'AWD sull'efficienza del fertilizzante




WFL determina un'efficienza del fertilizzante azotato leggermente superiore rispetto all'AWD nelle prime fasi di crescita.

PROVA DI CAMPO

Risultati produttivi ai diversi livelli di concimazione (media 2021-2022)



PROVA DI CAMPO

Efficienza della concimazione in campo (media 2021-2022)

Efficienza = rapporto tra quantità di N assorbita e la quantità di N apportata con la concimazione

Le diverse tecniche di irrigazione non influenzano significativamente l'efficienza della concimazione.

CONCLUSIONI

Con l'irrigazione AWD risulta opportuno:

- ❖ Favorire la sincronizzazione tra disponibilità di azoto e assorbimento da parte della coltura in modo da prevenirne le perdite soprattutto nelle prime fasi colturali.
- ❖ Modulare la concimazione azotata in funzione dei cicli AWD e della varietà al fine di ottimizzare l'efficienza d'uso dell'azoto.
- ❖ Gestire correttamente i residui colturali per ottenere un migliore sfruttamento dell'azoto del suolo.
- * Evitare elevate concimazioni azotate in pre-semina con la gestione AWD.
- ❖ Sommergere tempestivamente la risaia dopo le concimazioni in copertura e mantenere la sommersione per almeno 7-10 giorni.
- ❖ Valutare l'impiego di concimi azotati addizionati di inibitore.

PROGETTO RISWAGEST GESTIONE INNOVATIVA DELL'ACQUA IN RISAIA

Andrea Vitali, Luisella Celi, Daniel Said-Pullicino, Francesco Vidotto, Chiara Bertora, Barbara Moretti, Federica Russo, Cristina Lerda, Marco Romani, Eleonora Miniotti, Gianluca Beltarre, Daniele Tenni